Lesson 2 Data sorting in R
Core rules
· Each variable has its own column.
· Each observation has its own row.
· Each value has its own cell.

For large datasets, it’s common practice to select or manipulate only a portion of the full dataset to address your specific question. The 'dplyr' package provides a suite of functions for data manipulation such as:
· select(): selects columns from a data frame.
· filter(): filters rows based on conditions.
· mutate(): creates new columns or modifies existing ones.
· arrange(): sort rows in ascending or descending order.
· summarize(): computes summary statistics of data.
· group_by(): groups data by one or more variables for aggregation functions.

Before data wrangling can begin it is important to first develop a potential biological question and then understand what type of data has been collected prior to data visualizations or analysis.
When you are designing an experiment or collecting data it is good to determine what type of data you are collecting because the type of data also determines what statistical analysis you can complete.
Exploring a new dataset is always exciting, as it holds a lot of potential. However, if you didn’t collect the data yourself, it may not have immediate meaning until you explore its contents. The first step in working with any dataset is to explore it thoroughly. You need to understand the size of the dataset (i.e., the number of rows and columns) and the types of data it contains (e.g., numeric, factors).

Step 1:
Load the dataset

Exploring the structure of the data
str() function to check the structure of the dataset, which provides detailed information about the types of data in each column.
str(name of data set)
Example: str(fish)

The placed column in the dataset has a number that represents that body condition score based on the following categories:
· 1 = Excellent
· 2 = Above Normal
· 3 = Normal
· 4 = Under condition
· 5 = Poor

One step of data cleaning is removing observations (rows) that you're not interested in. In this case, you want to remove "Under condition" and "Poor".

You can copy the notations in red to R script.
Reminder: In R, number signs/hashtags “#” are used to denote comments in the code. Anything following the # on the same line has no effect on the execution of the code. Comments are useful for adding explanations, clarifications, or notes to the code, making it easier for yourself (and others) to understand what the code does

Filter
Load the dplyr package
require(dplyr)
Print the dataset
print(data)
Filter for variable that are "excellent", "above normal" or “normal”
data %>% filter(body condition score<=3)

Adding a column
The next step of data cleaning is manipulating your variables (columns) to make them more informative.
In this case, you have a tank number column that is hard to interpret intuitively. You want to add a diet column are going to add a code with the tank number
#Use mutate() to add a code column by adding the diet to the tank column.

Add another %>% step to add a diet column
fish2<-fish %>%
 filter(body.condition.score <= 3) %>%
 mutate(Diet=Tank + 4)
Removing a column
This is the code to remove a column
df = subset(mydata, select = -c(“column_to remove”))
Try
df = subset(Fish2, select = -c(Fish.ID))

Summarising the full dataset
In this analysis, you're going to focus on " body condition" as a metric for weight
You'll start by finding this summary for the entire dataset: the fraction of all individuals that were "excellent". Note that within your call to summarize(), you can use n() to find the total number of excellent conditon and mean(body.conditon.score == 1) to find the fraction of "Excellent" .

fish2 %>%
 summarize(
 count = n(),
 Percent_excellent= mean(body.condition.score==1))

Summarising by diet
The summarize() function is especially useful because it can be used within groups.
For example, you might like to know how much the weight of fish changed with diet. To examine this, you can use group_by() to perform your summary not for the entire dataset, but within each diet.
· Add a group_by() to your code to summarize() within each year.
Change this code to summarize by year
fish2 %>%
 group_by(Diet) %>%
 summarize(total = n(),
 percent_weight = mean(weight))

