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INTRODUCTION

ABSTRACT

1. Animal tuberculosis (TB) control is globally important for public health, eco-
nomics and conservation. Wildlife species are often part of the Mycobacterium
tuberculosis complex (MTC) maintenance community, complicating TB control
attempts.

2. We describe the current knowledge on global TB distribution and the signifi-
cance of wildlife hosts; identify insufficiently known aspects of host pathology,
ecology and epidemiology; present selected time series in wildlife TB; and summa-
rize ongoing research on TB control, providing additional insight on vaccination.
3. Six specific research needs are identified and discussed, namely: 1) complete
the world map of wildlife MTC reservoirs and describe the structure of each local
MTC host community; 2) identify the origin and behaviour of generalized dis-
eased individuals within populations, and study the role of factors such as
co-infections, re-infections and individual condition on TB pathogenesis; 3)
quantify indirect MTC transmission within and between species; 4) define and
harmonize wildlife disease monitoring protocols, and apply them in a way that
allows proper population and prevalence trend comparisons in both space and
time; 5) carry out controlled and replicated wildlife TB control experiments using
single intervention tools; 6) analyse cost-efficiency and consider knowledge trans-
fer aspects in promising intervention strategies.

4. We believe that addressing these six points would push ahead our capacities for
TB control. A remaining question is whether or not interventions on wildlife TB
are at all justified. The answer depends on the local circumstances of each TB
hotspot, and is likely to evolve during our collective progress towards TB control
in livestock and in wildlife.

causes extra-pulmonary disease in humans and is still a major
public health concern in developing countries, often linked

The Mycobacterium tuberculosis complex (MTC) is a group of
multi-host pathogens thriving at the wildlife-livestock inter-
face. Animal tuberculosis (TB) is due to infection with Myco-
bacterium bovis and other closely related members of the
MTC, such as Mycobacterium caprae. Zoonotic TB is the
disease caused by non-Mycobacterium tuberculosis members
of the MTC transmitted from animals to humans. It often

with the consumption of raw dairy products or close contact
with infected livestock (Diirr et al. 2013). In industrialized
countries, the main reason for TB control is economic: cattle
TB results in severe losses due to trade restrictions and slaugh-
ter compensations for test-positive animals (Amanfu 2006).
Recently, TB has become of concern in other livestock sectors
such as the pig industry (Bailey et al. 2013). TB acquired by
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consuming MTC-infected prey affects lion Panthera leo con-
servation in South Africa (Renwick et al. 2007) and Iberian
lynx Lynx pardinus conservation in the Iberian Peninsula
(Lépezet al. 2014). Moreover, TB-mediated conflicts between
farmers, hunters and conservationists can affect animal
health and conservation strategies in and around protected
natural areas (Gortézar et al. 2010). Hence, animal TB control
is considered globally important for public health, economics
and conservation.

In most industrialized countries, successful cattle TB
control is based on intensive cattle test and slaughter, and
on movement control policies, with sporadic whole herd
culling (Brooks-Pollock et al. 2014). However, the eradica-
tion of cattle TB remains unlikely if the role of all hosts is
not clear enough for relevant reservoirs to be targeted
at the same time (O’Reilly & Daborn 1995, Gortdzar &
Cowan 2013). TB control in wildlife is extremely
difficult (Fitzgerald & Kaneene 2013). Several reviews have
addressed wildlife TB, underlining the need to understand
epidemiological complexity and to use integrated
approaches for TB control at the wildlife-livestock interface
(Gortdzar etal. 2012, Palmer etal. 2012, Fitzgerald &
Kaneene 2013, Palmer 2013). In this non-systematic review,
we describe the significance of wildlife as part of complex
multi-host MTC maintenance communities; identify insuf-
ficiently known aspects of host pathology, ecology and TB
epidemiology; present selected time series in wildlife TB;
and summarize ongoing research on TB control. Specific
research needs are identified and discussed.

MTC RESERVOIRS

TB control is difficult in large areas with insufficient live-
stock movement control and complex host communities
(Acevedo etal. 2013). MTC host communities are often
composed of both domestic and wild hosts. The domestic
portion of this host community often includes goats, pigs or
other domesticated species in addition to cattle (Gortazar
etal. 2011b), while wild hosts often go beyond the local
‘key’ reservoir species to include additional hosts with larger
or smaller contributions to MTC maintenance (Palmer
2013). In addition, the environment itself might contribute
to maintaining viable MTC in water or soil, further compli-
cating TB epidemiology (Ghodbane et al. 2014, Walter et al.
2014). More complex scenarios provide better opportunities
for MTC survival, and greater challenges for TB control. In
this context, the term reservoir means the whole system
(domestic hosts, wild hosts and environment) rather than a
single-host species (sensu Haydon et al. 2002). In our view,
cattle are an active part of the MTC maintenance commu-
nity, while also being the main target of disease control.
Worldwide, the best-known wildlife TB reservoir situa-
tions occur in the British Isles and the Iberian Peninsula in
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Europe (Gortdzar etal. 2012), in sub-Saharan Africa
(Michel et al. 2006), in parts of North America (Wobeser
2009, Carstensen & DonCarlos 2011, O’Brien et al. 2011a,
Shury & Bergeson 2011, Miller & Sweeney 2013) and in
New Zealand (Hutchings et al. 2013). These areas represent
global wildlife TB hotspots. Details on host ecology, pathol-
ogy, surveillance and control attempts have recently been
reviewed for each of these hotspots by Fitzgerald and
Kaneene (2013). Pathology and epidemiology were also
recently reviewed by Palmer (2013). Three hotspots are cur-
rently regarded as two-host settings, with one target species
(cattle) and one single wildlife reservoir: the Eurasian
badger Meles meles in the British Isles; the introduced Aus-
tralian brushtail possum Trichosurus vulpecula in New
Zealand; and white-tailed deer Odocoileus virginianus in
Michigan, USA. However, the epidemiological complexity
might actually be larger in some of these systems.

By contrast, multi-host situations are known to occur in
Mediterranean habitats of the Iberian Peninsula and in sub-
Saharan Africa. In the Iberian Peninsula, several wild ungu-
lates, namely the Eurasian wild boar Sus scrofa, red deer
Cervus elaphus and fallow deer Dama dama, are regarded as
members of the wildlife MTC maintenance host commu-
nity, and TB epidemiology is further complicated by the
co-existence of several suitable domestic hosts, including
cattle, goats and pigs (Gortézar etal. 2011b). In southern
Africa, MTC is probably mainly maintained by the African
buffalo Syncerus caffer in several settings, and by the lechwe
antelope Kobus leche in Zambia’s Kafue National Park
(Michel et al. 2006). But MTC infects a long list of other
wild African mammals, some of which might contribute to
complexity (Michel et al. 2006).

In addition, MTC infection is endemic in feral pigs on the
island of Molokai in Hawaii (Miller & Sweeney 2013), in
American bison Bison bison in Wood Buffalo National Park,
Alberta, Canada (Joly & Messier 2004, Wobeser 2009), and
in red deer in the Tyrolean Alps of Austria and neigh-
bouring countries (Schoepf et al. 2012). Figure 1 represents
the geographical distribution of scientific literature on wild-
life TB, evidencing the existing bias towards a few regions.
By contrast, information on wildlife TB from Asia, South
America and northern Africa is extremely scarce. Table 1
lists examples of underreported wildlife TB.

Case study: Southeast Asia

One example of a region where the epidemiology of animal
TB and the role of wildlife hosts is poorly understood is
Southeast Asia. Between 2005 and 2013, the Office Interna-
tional des Epizooties (OIE) World Animal Health Informa-
tion Database (Anonymous 2013a) recorded TB reports in
four countries of the region: Malaysia (75 cases in goats and
cattle), Thailand (36 cases in cattle and buffaloes), Myanmar
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Fig. 1. Numbers of literature references in the Scopus database relating to different geographical areas found using the search terms "wildlife” and
‘tuberculosis’ from the period 1994 to 2013. It is evident that scientific activity is biased towards a few hotspots in Europe, North America, sub-
Saharan Africa and New Zealand, while very little information is available for Asia and Latin America. Light grey areas are those in which almost no
studies of bovine TB were found.

Table 1. Examples of situations where the role of wildlife in Mycobacterium tuberculosis complex (MTC) maintenance is unknown, under-reported

or still under debate

Host species

Country or region

MTC prevalence and remarks on host status

References

White-tailed deer

Red deer

Feral pig or introduced
wild boar
Eurasian wild boar

European bison

Eurasian Badger

Lion

Deer species and
wild boar

Mexico

Alpine countries, central
Europe

South America

Atlantic Spain, France, other
regions in Europe

Poland

Atlantic Spain, France, other
regions in Europe

Kruger National Park, South

Africa
England

Low seroprevalence, sporadic confirmation
by PCR, reservoir status unknown

Locally high Mycobacterium caprae
prevalence in red deer, linked to winter
feeding, with spill-over to cattle

Sporadic reports on Mycobacterium bovis
isolation, reservoir status unknown

Generally low prevalence, links with cattle
TB breakdowns, reservoir status unknown

Confirmed infection with spill-over to
Eurasian lynx Lynx lynx and wild boar,
reservoir status unknown

Links with cattle TB breakdowns, reservoir
status unknown except for the British Isles

Confirmed infection, reservoir status under
debate

Confirmed infection, not regarded as
reservoirs, but expanding

Barrios-Garcia et al. (2012);
Medrano et al. (2012)
Schoepf et al. (2012)

Meikle et al. (2011)

Munoz-Mendoza et al.
(2013); Richomme et al.
(2013)

Krajewska et al. (2014)

Balseiro et al. (2011);
Richomme et al. (2013);
Payne et al. (2013)

Renwick et al. (2007)

Ward et al. (2009); Foyle
et al. (2010); Ward and
Smith (2012)

PCR, Polymerase Chain Reaction; TB, tuberculosis.
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Southeast Asia:

Buffaloes 13 million

Cattles 49 million
_ Swine 69 million
-, Sheep/Goats 223 million

Fig. 2. Map of Southeast Asia, with animal shapes indicating the distribution of potential wildlife hosts for the Mycobacterium tuberculosis
complex, and stars indicating countries in which animal tuberculosis (TB) was reported between 2005 and 2013 (Myanmar, Thailand, Vietnam,
Malaysia and Indonesia). The box shows total estimated livestock numbers (source: Anonymous 2013b).

(9 cases in unknown wildlife species) and suspected cases in
wildlife in Vietnam (Fig. 2).

In addition to these OIE data, a literature review revealed
the possible implication of other animal species in MTC
epidemiology, including Asian elephants Elephas maximus
(Angkawanish et al. 2010, but see Ong et al. 2013) and non-
human primates (Payne et al. 2011). Hence, TB is present in
the region both in livestock and in wildlife.

However, the extent of the problem and the role of wild-
life in MTC epidemiology are largely unknown. Wild suids
Sus scrofa for instance are regarded as suitable MTC mainte-
nance hosts in some parts of Europe (Gortézar et al. 2012)
and America (Miller & Sweeney 2013). In Southeast Asia,
wild suids (several species) are widely distributed (Fig. 2),
and occur at high densities (e.g. up to 78 per square km in
Malaysia, Ickes 2001). Similarly, deer of the subfamily
cervinae (genera Axis and Cervus) are present in Southeast

Asia (Fig. 2). Thus, after improving the knowledge on TB in
livestock, it would be interesting to investigate the presence
and prevalence of TB in wild suids and deer from different
sites throughout the region, including sites with and
without contact with livestock, and representing the range
of wild ungulate densities. Since contact between domestic
and wild suids is likely in Southeast Asia, there is an increas-
ing trend in deer farming, and trans-border movement of
potential wildlife reservoirs is likely, wildlife hosts need to
be studied along with the domestic MTC hosts.

Research needs: MTC reservoirs

Two aspects require further research: first, completing the
map of wildlife MTC reservoirs (as noted by Palmer 2013)
and second, understanding the structure of each regional
MTC host community: host species and their roles.
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HOST PATHOLOGY, ECOLOGY AND
TB EPIDEMIOLOGY

The distribution and characteristics of TB lesions in
infected hosts of different species is of paramount impor-
tance for understanding MTC transmission. It is assumed
that TB lesion characteristics and their distribution are
related to mycobacterial excretion and may be related to
transmission risk. In ungulates (bovids, cervids and suids),
lung and thoracic lymph node involvement is frequent
(about 20-60% of infected individuals; O’Brien et al. 2001,
Martin-Hernando et al. 2007, 2010, Shury & Bergeson 2011,
Fitzgerald & Kaneene 2013, Mufioz-Mendoza et al. 2013). In
white-tailed deer, the most common site for lesion develop-
ment is the medial retropharyngeal lymph node (Palmer
2013). This is consistent with MTC shedding mainly by oral
and nasal excretion and secondarily also by faecal excretion.
In badgers, the prevalence of lung involvement is also about
50%. However, kidneys are often affected, too, and infected
bite-wounds or draining subcutaneous lymph nodes might
also produce additional shedding routes (Gallagher &
Clifton-Hadley 2000). Badgers are thought to transmit
MTC to cattle mainly by indirect contact, for instance by
contaminating cattle feed (Wilson etal. 2011). Infected
possums rarely present lung lesions, but do develop drain-
ing lesions in subcutaneous inguinal and axillary lymph
nodes, which are likely to contribute to inter-species trans-
mission (Paterson & Morris 1995). These different potential
MTC shedding routes might have significant consequences
for TB epidemiology, including environmental contamina-
tion. Knowing the shedding routes may contribute to
improved control.

Host sex and age are well-known predictors of risk of
MTC infection. Other less often evidenced individual risk
factors include belonging to infected family groups or social
groups (e.g. Blanchong et al. 2007, Gortazar et al. 2011a),
and certain individual genetic backgrounds (Acevedo-
Whitehonse et al. 2005). Known risk factors at the popula-
tion level include having direct and indirect contact net-
works (risk varies with inter-specific contact rate) to other
infected host species, existing at high densities and forming
large spatial aggregations at feeding sites or waterholes
(O’Brien et al. 2006, Vicente etal. 2007b). Co-infections
have been suggested to drive TB epidemiology. In Mediter-
ranean Spain, correlations were found (at the population
level) between wild boar TB prevalence, generalized TB and
the prevalence of porcine circovirus type 2, a widespread
immunosuppressive virus (Risco et al. 2013). However, such
correlations were less evident at the individual animal scale
(Diez-Delgado et al. 2014b). Human influences (via activi-
ties such as fencing, feeding, translocating) have often con-
tributed to the introduction and maintenance of TB in
wildlife (Palmer 2007, Fitzgerald & Kaneene 2013, Vicente
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etal. 2013). Thus, while co-infections could be relevant,
confounders such as management impede our understand-
ing of them in non-experimental settings.

Not all infected individuals contribute equally to MTC
maintenance within a certain host category and in a given
epidemiological setting. Animals with generalized lesions
are more likely to shed MTC (Palmer 2013 and the authors,
unpublished data), and those that do not shed may play a
limited epidemiological role or not play a role at all (Corner
2006). Unfortunately, the drivers of TB generalization are
less well-known than the drivers of infection, since lesion
scoring is not carried out as frequently as is the simple
detection of infection. In fact, proper quantitative or semi-
quantitative lesion scoring is usually only done in experi-
mental infections (e.g. Ballesteros et al. 2009b), as opposed
to observational studies in the wild (Vicente et al. 2013). For
instance, the practical necessity of maintaining large-scale
surveillance programmes over long periods often restricts
routine sampling to those anatomical sites (e.g. head
region) that are most frequently infected.

It is interesting to note that, while in TB-endemic Medi-
terranean regions, 57% of MTC-infected wild boar develop
thoracic lesions (Martin-Hernando et al. 2007), less than
20% do so in non-endemic areas of Atlantic climate such as
Asturias in northern Spain (Muiioz-Mendoza et al. 2013).
This suggests that in non-endemic areas, some factors,
maybe lower infection pressure, less frequent re-infection
events, or differences in the rate of co-infections and in
general host condition, contribute to limiting the likelihood
of animals developing severe disease. In Spain, dry seasons
have been identified as one of those drivers of TB general-
ization in wild boar (Vicente et al. 2013).

TB is largely regarded as a respiratory disease, in which
airborne transmission by aerosols plays a major epidemio-
logical role (Hopewell 1994). However, there is increasing
scientific evidence suggesting that direct contacts (those
facilitating aerosol transmission) between species are scarce
(Kukielka et al. 2013), and direct intra-species transmission
is not easily replicated in experiments (e.g. lack of transmis-
sion among fenced feral pigs in New Zealand, Nugent
2011). Moreover, observational (Vicente et al. 2007b) and
experimental studies (Palmer etal. 2004, Barasona et al.
2013) have shown that indirect transmission can occur at
feeding sites or waterholes. Considering this information
together, we hypothesize that MTC transmission between
wild and domestic hosts is mostly indirect.

Research needs: host pathology, ecology
and TB epidemiology

Research should focus on delivering better knowledge of the
origin and behaviour of generalized tuberculous individuals
within populations, and of the role of co-infections,
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re-infections and individual condition (among other
factors) in TB pathogenesis. Research quantifying indirect
MTC transmission within and between species is duly
needed to inform decisions on investment in control
options that tackle different potential transmission routes.

TIME TRENDS IN WILDLIFE TB

Unfortunately, few long-term studies in which serial moni-
toring is conducted are available for wildlife TB, A selection
of the longer ones is shown in Fig. 3. Generally speaking,
stable or declining trends below 10% prevalence occur in
cervids (e.g. elk Cervus elaphus in Riding Mountain
National Park, Canada) and in badgers in Woodchester
Park, England, while increasing trends occur in African
buffalo in the Kruger National Park, South Africa and in
wild boar in Ciudad Real, Spain. The available information
represents changes over time in prevalence, as opposed to
true time trends. Comparisons between species are difficult
due to variability in data type.

Analysing the significance of these trends and inferring
their drivers is beyond the scope of this review. However,
one could argue that wildlife TB control has been relatively
successful in (almost single-host) North American cervid
populations, as shown by the progressive declining trend of
white-tailed deer TB in Michigan, and the success of inter-
ventions in Minnesota (Carstensen & DonCarlos 2011) and
Manitoba (Shury & Bergeson 2011); while in high-
prevalence populations in multi-host settings with limited
(if any) control intervention, TB keeps getting worse (e.g.
Vicente et al. 2013). We hypothesize that two factors deter-
mine the observed trends: the capability to intervene with
costly or potentially contentious measures such as popula-
tion control, feeding bans and biosafety improvements; and
intervention in single-host vs. multi-host settings.

Research needs: time trends

There is a clear lack of constant, harmonized information
derived from large-scale disease and population monitor-

Recent advances in animal tuberculosis controt

ing. Even the best available time series data refer to local
areas, and information on wildlife abundance and relevant
metadata is not as readily available as information on TB
prevalence in livestock or even in wildlife. Hence, there is an
urgent need to define and harmonize wildlife disease moni-
toring protocols, and to apply them in a way that allows
proper trend comparisons in both space and time. This
information is of paramount importance for assessing the
effect of any future intervention (Boadella etal. 2011,
Gortdzar et al. 2015).

ATTEMPTS TO CONTROL TB

The goal of cattle TB eradication requires the development
of strategies that reduce pathogen transmission between
wildlife and domestic animals (O’Reilly & Daborn 1995).
This is a cross-disciplinary task where inter-agency teams of
vets and ecologists are needed (Fitzgerald & Kaneene 2013).
Currently available tools for disease control at the wildlife-
livestock interface were recently reviewed (Delahay et al.
2009, O’Brien et al. 2011b, Gortazar et al. 2015) and range
from interaction management (farm biosafety improve-
ment), through random (culling) or targeted (test and cull)
population control, to vaccination. Examples of successful
MTC eradication in wildlife are scarce, although there are
cases consistent with wildlife culling impacting on cattle TB
(see Table 2). One aspect to consider is reporting bias: failed
experiments are less likely to be reported than successful
ones.

Population control

The UK randomized badger culling trial (Donnelly et al.
2006, 2007), and the Irish four areas experiments (Corner
et al. 2008), along with data on wild boar culling in Spain
(Boadella et al. 2012), are among the few studies where
random culling was tested as a single TB control tool. In our
view, random culling of wildlife reservoir hosts might con-
tribute to cattle TB control through reduction of densities,
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Table 2. Selected examples of tuberculosis (TB) control attempts at the wildlife-livestock interface and their reported outcomes

Host and setting

TB control tools

Outcome (in wildlife and cattle)

References

Wild boar in multi-host
settings, Spain

Badger in the British Isles, UK
and Rol

White-tailed deer in
Minnesota, USA

White-tailed deer in
Michigan, USA

Buffalo and other mammals
in Kruger NP, South Africa

Wild boar and red deer on
beef cattle farm, Spain

Brushtail possum, New
Zealand
Badger, UK

Wild boar, Spain

Brushtail possum, New
Zealand

White-tailed deer, Michigan,
USA

American bison, Elk Island
National Park, Canada

Wild boar population control,
(also in cattle depopulation
and re-stocking)

Badger population control

White-tailed deer population
control, feeding bans,
cattle biosafety
improvements, voluntary
cattle buyout programme

White-tailed deer population
control, feeding bans,
cattle biosafety

Electrified fencing to avoid
escapes and contact with
cattle

Changes to waterholes
making them cattle or
wildlife-proof

Oral BCG vaccination

Parenteral BCG vaccination

Oral IV vaccination
Nationwide population
control (poison)

Local test and cull attempt

Local test cull attempt

Variable outcomes, including reduction in wild
boar TB prevalence, and in TB prevalence in
sympatric deer and cattle

Variable, depending on study site, treatment
surface and type of control. Positive effects
on cattle TB in Ireland.

TB no longer detectable in wildlife, cattle herds
cleared

Significant reduction, but TB still endemic in
deer, sporadic in cattle, other wildlife

Some species are able to cross fences

Reduction in cattle TB prevalence below
previous records and below control areas

Lower incidence in vaccinated possums

Lower test positivity in vaccinated badgers,
unvaccinated cubs. Lower infection likelihood
in vaccinated sets

Lower infection prevalence in vaccinated wild
boar

Lower possum TB prevalence and less spill-back
to cattle. Cattle TB declining.

Impractical due to low prevalence; expensive,
eradication unlikely

Success (small isolated population)

Boadella et al. (2012);
Garcia-limenez et al
(2013); Mentaberre et al
(2014)

Corner et al. (2011)

Carstensen and DonCarlos
(2011)

O’Brien et al. (2011a);
Ramsey et al. (2014b)

Renwick et al. (2007)

Barasona et al. (2013)

Tompkins et al. (2009)

Chambers et al (2011);
Wilson et al. (2011); Carter
et al. (2012)

Diez-Delgado et al. (2014a)

Hutchings et al. (2011)

Cosgrove et al. (2012a, b)

Wobeser (2009)

BCG, Bacille Calmette-Gueérin; Rol, Republic of Ireland.

contact rates or specific high-risk individuals. However, it
provokes a strong debate among stakeholders and is not
sustainable as a long-term tool in Europe. Possible excep-
tions might include culling invasive (pest) species such as
possums in New Zealand (O’Brien et al. 2011b) or water
buffalo Bubalus bubalis in Australia (Radunz 2006),
and short-term culling in response to new outbreaks
(Carstensen & DonCarlos 2011, Gortazar et al. 2015).

Targeted culling (selective culling) failed to yield convinc-
ing results in attempts targeting white-tailed deer in Michi-
gan (Cosgrove etal. 2012b) or wild boar in Spain (the
authors, unpublished data). This tool depends on capturing
a large proportion of an animal population, testing it, and
selectively removing test-positive individuals. This kind of
intervention is probably more suitable for captive wild
animals (Gortézar et al. 2015).

Farm biosafety

Farm biosecurity practices are known preventative tools in
livestock farming. The rationale consists of using fencing
and other physical barriers to reduce contact between live-
stock and potentially infected wildlife (Gortdzar et al. 2015).
For instance, sheet metal gates and fencing, feed bins and
electric fencing were shown to prevent badgers from enter-
ing cattle farm facilities in the UK (Judge etal. 2011). In
Spain, segregating wild ungulates and livestock from
common resources such as waterholes reduced cattle TB
incidence (Barasona et al. 2013). Nonetheless, fences are
vulnerable to certain animal species that can destroy them,
and are expensive to set up and maintain (Jori et al. 2011).
As in the case of culling, there are few situations where bio-
safety improvements have been the only approach to TB
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control at the wildlife-livestock interface (Renwick et al.
2007, Barasona et al. 2013).

Research needs: controlling TB

There is a need for experiments enabling the evaluation of
the benefits of each single intervention tool. Although valu-
able examples of on-farm prevention do exist, there is no
replicated information available on the effect on cattle TB of
using preventive farm biosafety measures alone, in the
absence of other interventions such as feeding bans or
population control.

VACCINATION

Of the three main intervention tools, namely biosafety mea-
sures, culling and vaccination, vaccination is most likely to
provide hope in the decade ahead. This is because biosafety
measures alone can help to reduce cattle TB prevalence, but
are unlikely to eradicate MTC (Barasona et al. 2013), and
because culling is generally regarded as a non-sustainable
disease control tool in the long term (Chambers et al. 2011,
Corner et al. 2011, Boadella et al. 2012).

Recent reviews have addressed wildlife TB vaccination
(O’Brien et al. 2011b, Beltran-Beck et al. 2012, Buddle et al.
2013, Gormley & Corner 2013). Controlled and replicated
field experiments are available for possums (Tompkins et al.
2009), badgers (Chambers et al. 2011) and for wild boar
(Diez-Delgado et al. 2014a). Here we use two case studies to
discuss some practical aspects of wildlife vaccination in
single-host and multi-host contexts.

Case study: planning for vaccination in
Michigan, USA

Vaccination of wildlife to eliminate pathogens at landscape
scales has proven nearly impossible where multiple mainte-
nance hosts exist (Plumb etal. 2007). Because only one
maintenance host other than cattle, i.e. white-tailed deer,
has thus far been identified in Michigan (O’Brien et al.
2006, 2011a), vaccination is a viable option, and has been
included in modelling of likely outcomes of control strate-
gies (Ramsey et al. 2014a).

In Michigan livestock, 67 TB-positive herds have been
identified (49 beef, 13 dairy cattle, 4 farmed deer and 1
bison). Forty-five outbreaks (67%) have been officially
attributed to wildlife exposure. Eight cattle farms have expe-
rienced multiple breakdowns (7 twice, 1 three times),
accounting for 27% (17 out of 62) of the cattle farm total.
Elimination of TB from Michigan cattle appears to be
achievable: the number of herds that break down each year
is low (mean: 3.7, range: 1-8, variance: 2.2 in 1998-2014),
most herds had two or fewer culture-positive cattle at post
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mortem, electronic identification has theoretically made all
Michigan cattle traceable, and improvements in farm
biosecurity have been partially implemented (O’Brien et al.
2011a, Walter et al. 2012). Who would pay for vaccination
has not yet been seriously discussed.

One argument justifying vaccination of white-tailed deer
is stewardship, the responsibility to leave a healthy deer herd
for sustained use by future generations. Notably, vaccination
is not justified by negative population-level effects of bovine
TB on white-tailed deer. White-tailed deer are abundant: the
estimated population in Michigan is 1.7 million (range
1.69-1.97 million, 2011-2013; Michigan Department of
Natural Resources, unpublished data; estimation via sex—age
kill; Mattson & Moritz 2008). Population-level TB mortality
is minimal, and white-tailed deer are of economic and cul-
tural, rather than conservation, significance (O’Brien et al.
2006). Vaccinating deer is arguably less justifiable than vac-
cinating cattle, but vaccination of white-tailed deer is par-
tially driven by the current lack of a viable bovine vaccine,
and by social concerns that make cattle an unpalatable
target for vaccination (Plumb et al. 2007). Cattle vaccina-
tion is likely to be far simpler logistically and more cost-
effective than deer vaccination. Ultimately, however,
vaccination of white-tailed deer is justified to eliminate the
self-sustaining wildlife reservoir from the landscape.

Prevention of TB in white-tailed deer, while desirable, is
not necessary. Vaccination needs only to reduce or prevent
transmission among deer and to other species. As the
vaccine, Danish Bacille Calmette-Guérin (BCG) is the likely
candidate (Waters et al. 2012). In 19- to 20-week studies,
BCG has proven safe and effective (Palmer et al. 2007, 2009,
2014b, Nol et al. 2008). Oral administration has been most
effective (Nol et al. 2008). Given the greater tissue persis-
tence of parenteral BCG (Palmer et al. 2010b, 2014c), oral
administration seems likely to be the preferred delivery
route. Research into bait uptake is underway (Palmer et al.
2014a). Limited secondary transmission of BCG has
occurred from vaccinates to unvaccinated in-contact deer,
but not to indirectly exposed cattle (Palmer et al. 2010a, Nol
et al. 2013). Studies of duration of immunity, reduction of
transmission, and the effects of BCG overdose in white-
tailed deer are underway (M. V. Palmer, personal communi-
cations). The geographical scale of a potential vaccination
programme is relatively well-defined: both white-tailed deer
and cattle in the core outbreak area, Deer Management Unit
(DMU) 452, have the highest risk of infection based on
prevalence (Table 3). Within DMU 452, cattle farms occupy
less than one-third of the area (Fig. 4). Modelling suggests
that vaccinating deer in the vicinity of those farms could
quickly reduce herd breakdowns (Ramsey et al. 2014b).

Female white-tailed deer and their female offspring
exhibit remarkable fidelity to natal range (Van Deelen et al.
1998, Nelson & Mech 1999). In the TB-endemic area, most
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Table 3. Apparent prevalence of

Area TB+ free-ranging white-tailed deer TB+ cattle farms Mycobacterium bovis infection in free-ranging
DMU 452 579/27476 21% 16/88 18% white-tailed deer and percentage of cattle
Rest of endemic area 143/53010 027% 24/585 4.1%  farms with tuberculosis (TB+) by geographical
Rest of Michigan 22/120759 0.018% 13/-12953* 0.1% area, Michigan, USA, 1975-2014

DMU, Deer Management Unit.
*(Anonymous 2014)

females first breed as yearlings; about half produce twins.
Females typically give birth to twins annually from age 2
onward. If infected, matriarchial groups are likely to main-
tain bovine TB locally, and males act as between-group
spreaders (O’Brien etal. 2002, Palmer etal. in press).
Annual mean white-tailed deer harvest in DMU 452 is
~5400 of the population of ~25000-30000, comprising
40% of the adult male and 16% of the female and fawn
population per year. Between 2001 and 2011, 40% (range
31-49%) of the white-tailed deer harvested were <1.5 years
old (Michigan Department of Natural Resources, unpub-
lished data). If, as in other species (Ballesteros et al. 2009a,
Waters et al. 2012), young white-tailed deer are optimal
targets for vaccination, increased hunting pressure on juve-
niles resulting in high juvenile mortality may prolong the
time to bovine TB eradication. Annual vaccination of 90%
of susceptible deer with a 90% efficacious vaccine would
take about three decades to achieve eradication (Ramsey
etal. 2014a). Models predict that the shortest time to
eradication will occur by vaccinating deer in midsummer
(Palmer et al. in press). However, the desire to minimize
human exposure to persistent BCG in harvested venison
(Palmer etal. 2010b, 2014c) may dictate vaccination in
winter.

Designing a field trial presents many challenges. A com-
bined field feasibility and modelling study of a live-trap/
test/cull or vaccinate approach suggested that 30 years of
application in DMU 452 would cost ~US$50 million and
carry only a 34% probability of bovine TB eradication from
white-tailed deer (Cosgrove et al. 2012a, b). Consequently,
mass distribution of oral baits is likely to be necessary. Costs
notwithstanding, sacrificing large numbers of deer in order
to measure the effectiveness of vaccination may not be fea-
sible because of opposition by hunters. Potential alternatives
may include greatly expanded testing of hunter-harvested
deer for BCG, and a before-after control-impact study to
measure the rate of TB extinction (MacKenzie et al. 2006).
Delivery of oral BCG could occur either via bait stations
(Ballesteros et al. 2009a) or via aerial bait drops (Rosatte
etal. 2009, Muller etal. 2012). Accomplishing uniform
spatial coverage with bait stations would necessitate unfet-
tered access to privately owned lands, which comprise 93%
of DMU 452 (Carstensen et al. 2011). Increased aggregation
of deer at bait stations (Thompson et al. 2008) and the con-
sequent increased TB transmission (Becker & Hall 2014,
Ramsey et al. 2014a) might attenuate vaccination’s positive
effects. Agency use of bait where baiting by hunters is
banned could prove problematic (Rudolph etal. 2006).

Legend
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Fig. 4. Locations of Mycobacterium bovis
infected free-ranging white-tailed deer and
= tuberculosis  (TB)-positive cattle farms in
@ Deer Management Unit 452, Michigan, USA,
1975-2012.
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Aerial bait distribution would be likely to lead to better
spatial coverage of white-tailed deer, but there would be less
control of BCG exposures to non-target species, notably
cattle.

Given current modelling results, it seems that no strategy,
including vaccination, will be successful with only short-
term commitment to its application. It is not yet clear
whether Michigan’s policymakers, hunters, farmers and
public are sufficiently committed to TB eradication to
warrant embarking on a long-term vaccination programme
in earnest (Ramsey et al. 2014a).

Case study: Montes de Toledo, Spain

Starting in 2007, the first controlled laboratory wild boar
vaccination trials employed oral and parenteral BCG and
resulted in the characterization of the wild boar immune
response to vaccination and infection (Ballesteros et al.
2009b, Pérez de la Lastra etal. 2009). Later, a heat-
inactivated field strain of Mycobacterium bovis (inactivated
vaccine, IV) was successfully used in new controlled vacci-
nation and challenge trials. The IV yielded protection levels
similar to BCG (Garrido et al. 2011). In additional experi-
ments in captive animals, protection levels of above 80%
were achieved through re-vaccination, both for BCG
(Gortazar etal. 2014) and for IV (Beltrin-Beck et al.
2014a). In parallel, suitable oral baits (Ballesteros et al,
2009c), piglet-selective deployment cages (Ballesteros
et al. 2009a) and efficient bait deployment strategies were
designed and field-tested (Ballesteros et al. 2011). Since the
summer of 2012, the first field trials are ongoing in the
high-prevalence region of Montes de Toledo in Spain using
BCG and IV in different sites (Diez-Delgado et al., unpub-
lished data).

Safe and specific vaccine deployment is a key concern in
oral vaccination strategies. In addition, confirmation of bait
uptake (i.e. the use of marked baits) is needed to generate
sound scientific data. In the wild boar field vaccination
experiments, safety and specificity were confirmed through
camera trap surveys and analyses of target and non-target
host tissues for BCG (Beltran-Beck et al. 2014b). Further-
more, daily bait deployment at dusk and collection of non-
consumed baits immediately after dawn improved bait
specificity and limited BCG inactivation due to high envi-
ronmental temperatures. However, this procedure is labour-
intensive and could be avoided by deploying only the IV.

Assessing vaccination efficacy under field conditions is
challenging. In the ongoing vaccination field trials, sites
were purposefully selected away from cattle farms, since
risks of cattle contamination with live BCG could not be
excluded a priori. Hence, no results will become available in
terms of reductions in outbreaks of cattle TB. So far, this has
also been the case in other field vaccination trials in
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possums and badgers (Tompkins etal. 2009, Chambers
etal. 2011). Further experiments on and around
TB-positive cattle farms are required. However, the effects of
wild boar vaccination are measured in the wild boar target
host. Efficacy can be tested at the individual level (in piglets
with and without the biomarker) and at the population
scale (treatment sites before and after treatment; treatment
sites vs. controls). Preliminary information regarding lesion
and culture scores in piglets is encouraging (Diez-Delgado
et al., unpublished data).

No cost estimations are currently available for this field
experiment. Also, results are currently available for only two
bait deployment years, and the experiment will continue for
at least 4 years. Modelling suggests that clear results at the
population scale will become evident after 5 years of vacci-
nation (Anderson et al. 2013). Finally, the newly developed
vaccine and selective baiting tools require knowledge trans-
fer from the laboratory to the market, and attainment of
regulatory approval for distribution in the field. Here, the
challenges faced are beyond those of traditional science, but
are equally important.

Research needs: vaccination

As shown by the case studies, field vaccination trials can be
challenging in terms of deployment logistics and accurate
efficacy assessment, and often need to take place over
periods longer than those covered by the usual research
grant funds. Some critical aspects to be considered are not
scientific, but include cost-efficiency analyses and knowl-
edge transfer aspects.

DISCUSSION

In a review on wildlife disease monitoring using mycobacte-
rial diseases as a case study, Boadella et al. (2011) identified
several conceptual steps, from disease discovery and
descriptive epidemiology, through risk factor identification
and monitoring, to disease control. In this review, we iden-
tify six specific research needs, broadly corresponding to
these conceptual steps, as follows:

1. Complete the world map of wildlife MTC reservoirs and
describe the structure of each local MTC host community,
and the role of the environment (disease discovery and
descriptive epidemiology).

2. Identify the origin and behaviour of generalized diseased
individuals within populations, and study the role of factors
such as co-infections, re-infections and individual condition
on TB pathogenesis (risk factor identification).

3. Quantify indirect MTC transmission within and between
species (risk factor identification).

4. Define and harmonize wildlife disease monitoring proto-
cols, and apply them in a way that allows proper population
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and prevalence trend comparisons in both space and time
(monitoring).

5. Carry out properly designed wildlife TB control experi-
ments enabling the evaluation of the benefits of each single
intervention tool.

6. Analyse cost-efficiency and consider knowledge transfer
aspects in promising intervention strategies (control).

We believe that addressing these points would push
forward our capacity for TB control, through improving
our ability to identify, measure and control TB in multi-
host systems. However, many other open questions remain.
Vaccination, for instance, usually targets a single-host
species. Where MTC is maintained in a host community, the
benefits of targeting just one host species might be limited
(Plumb et al. 2007).

Another question derives from the fact that human influ-
ences have often contributed to the introduction and main-
tenance of TB in wildlife (Carstensen et al. 2011, Fitzgerald
& Kaneene 2013, Vicente et al. 2013). Efforts to deal with
social aspects and management-related public conflicts
deserve more support in order to achieve better stakeholder
and society buy-in (O’Brien etal. 2011a). For instance,
farmers’ opinions about TB can be influenced by their expe-
rience of the disease and their interactions with wildlife (e.g.
hunters vs. non-hunters; Cowie et al. 2013).

Since TB is more difficult to control in wildlife than in
cattle (Fitzgerald & Kaneene 2013), and since interventions
in natural systems are prone to conflicts (Artois et al. 2001),
a further remaining question is whether or not interven-
tions on wildlife TB are at all justiﬁed./ The answer varies
depending on the local circumstances in each TB hotspot,
and is likely to evolve during our collective progress towards
TB control in livestock and in wildlife.
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